
OCTOBER 1989 COMPUTERS AND 1AW NEWSLETTER PAGE 9

SOFTWARE: WHO ARE THE AUTHORS?

• by Andrew McBumie

Preface

TTie difficulties being 
experienced by the courts 
in keeping up with the ever 
increasing technicalities of 
computer law can be seen 
in a recent decision of 
Northrop J in the Federal 
Court of Australia in 
Autodesk Inc & Anor v 
Martin Peter Dyason & or. 
This is the first decision to 
look at the definition of 
"computer program" within 
the meaning of the 
Copyright Act 1968. The 
case, discussed in the 
opening article this issue, 
higlights some of the 
difficulties which are 
referred to in this article.

Introduction

The growth of computer 
technology has seen the 
wide-scale commercial use 
of a type of artifact which 
has commercial value 
almost solely by reason of 
its intellectual content, and 
very little by reason of its 
physical production cost. 
For commercial exchange, 
this artifact nowadays exists 
in the intangible form of 
electrical or magnetic 
patterns - the computer 
program.

The first primitive computer 
programs were produced 
over one hundred years 
ago by the Countess Ada

Lovelace, working on the 
mechanical computer of 
Charles Babbage. It is only 
in the last twenty years that 
the wide-scale use of 
computers has created a 
mass market for computer 
software, with attendant 
problems in the protection 
of the investment used to 
produce the software.

The computer program, as 
purchased on diskette, or 
some other form of 
magnetic media, is the final 
manifestation of a complex 
process of specification and 
authorship. The nature of 
this process raises issues 
relating to the protection of 
software which may be of 
interest to the legal 
profession.

Levels of Specification

A computer program, 
running in a computer 
system, is the end result; 
the lowest level of 
expression, of a series of 
higher level "programs", or 
specifications. Major stages 
in the specification and 
design of the system are 
often performed by people 
who do not actually write 
the program. The
development of a computer 
program may be done by 
program designers, or 
"software architects", who 
produce algorithms, data 
structures and other

documents which they 
describe to the 
programmers in various 
ways, for example module 
diagrams, flowcharts, screen 
layouts and a form called 
"pseudo-English" or
"structured English". This 
last form of description is 
also commonly found in 
computer science journals, 
as a way of describing new 
algorithms.

In the development of a 
large, complex computer 
program, or a suite of 
programs, there is a 
descending hierarchy of 
expressions of an idea. 
Each level of expression is 
more limited, becoming 
more mechanical, down to 
the unambiguous and 
formal precision of the 
programming language 
itself. Below that level is 
the object code and run 
time code, and finally the 
invocation of the run time 
code whenever it is actually 
used in a computer.

Levels of Authorship

A compiler for a particular 
programming language 
does not merely convert a 
program written in that 
anguage into the internal 
language of the particular 
system for which the 
program is targeted. It also 
puts a great deal of extra 
code into the converted



OCTOBER 1989 COMPUTERS AND LAW NEWSLETTER PAGE 10

program, (the object code). 
This extra software is 
commonly referred to as a 
"run-time" system, and is 
usually supplied by the 
designers ana programmers 
of the compiler.

For example, on computers 
which have no multiply or 
divide instructions, the 
compiler may generate 
multiplication and division 
routines built from complex 
iterations of addition and 
subtraction respectively. 
Similarly for calculations 
involving more complex 
functions such as square 
roots and trigonometric or 
hyperbolic functions.

More commonly, for 
computer programs which 
perform complex
manipulation of data 
records, complete suites of 
code providing means of 
indexing those records will 
be included. Methods of 
generating screen displays 
or communicating with 
other computer systems 
may also be generated, if 
the program calls upon 
them.

For some years now, most 
commercial compilers have 
simply included the 
"names" of the particular 
run-time units which are 
needed, and these are then 
separately copied into the 
final program by a piece of 
software commonly known 
as a "link editor", or just a 
"linker". The linker is also 
used to combine the efforts 
of several programmers,

each working on a module 
of a large program. With 
some operating systems, 
the needed run-time units 
can be loaded automatically 
into memory whenever the 
program is executed by a 
user. This saves on disc 
storage, since many 
programs may all use the 
same run-time software.

Sometimes, run-time
facilities are sold as distinct 
products, either as source 
code or as object code, for 
other software producers to 
incorporate into their own 
works. In the case of both 
compiler run-time systems 
and separate products, 
advertisements in the trade 
press will frequently 
promise that no royalties 
will be claimed by the 
authors of these "included" 
products.

On a similar theme, when a 
computer program is 
loaded into a computer 
system for execution and 
even after the inclusion of 
run-time units, many of the 
instructions the running 
program will issue to the 
computer, including those 
of any "included" code like 
run-time units, will not be 
actual machine instructions 
defined for the hardware of 
the machine. They are 
requests to the operating 
system software of the 
computer for certain 
operations to be performed. 
Typically, these are low- 
level input and output 
operations to devices such 
as disc drives, tape drives,

printers and computer 
screens.

These services are provided 
by the authors of the 
operating system, and the 
authors of the application 
code, at all levels, rely on 
the correct functioning of 
these services. The variety 
of authors involved in the 
creation of software for a 
particular computer, may 
often explain that 
computer’s occasional 
schizophrenic behaviour.

Levels of Ownership

Just as ownership resides in 
computer programs,
including programs which 
are language compilers, a 
form of ownership must lie 
in some programming 
languages themselves, 
independent of the 
computer programs which 
implement those languages. 
The language called 
"COBOL" is one example. 
It was defined in the early 
sixties by a group of 
computer manufacturers 
working with the United 
States Department of 
Defence. Any COBOL 
manual for a particular 
compiler must include an 
acknowledgement of the 
various forms of ownership 
involved, if the author of 
the compiler wishes to call 
his implementation
"COBOL". The intent of 
this only becomes clear 
with the much more 
modem language "Ada"

(Continued page 12))



OCTOBER 1989 COMPUTERS AND LAW NEWSLETTER PAGE 11

Notice is Given of the

ANNUAL GENERAL MEETING

of the NSW Society for Computers and the Law

on

Wednesday 6 December 1989 at 5.00 p m

at

Level 2, Law Society 
170 Phillip Street 

Sydney

All members are welcome



OCTOBER 1989 COMPUTERS AND LAW NEWSLETTER PAGE 12

(Software.... continued)

(named after the Countess 
Lovelace).

Sammet (1986) gives a 
good description. The 
United States Department of 
Defence is intent upon 
preserving its future 
investment in software by 
ensuring compatibility 
across all its widely 
differing computer systems 
and software. Previous 
languages, including
COBOL, have shown a 
tendency to split off into 
various dialects in a manner 
somewhat analogous to
human languages. This 
reduces the portability 
across different computers
of programs written
ostensibly in the same 
language.

The Department of Defence 
has in recent years
trademarked a language
called "Ada", and has 
written a suite of standard 
Ada software which Ada 
compilers must handle
successfully in order to be
allowed to be called "Ada" 
compilers. It has
specifically forbidden
subsets or supersets of Ada 
and has established a
formal liaison process with 
the American National
Standards Institute to 
control the development of 
the Ada language
specification.

Thus, Ada is the property of 
the United States
Department of Defence, 
while individual Ada
compilers are the property

of their authors, and 
individual programs written 
in Ada are the property of 
their authors. This is 
another hierarchy of 
ownership, which parallels 
that described above for the 
general development of 
software.

The Vanishing 
Programmer

Some of the latest 
programming languages, 
such as PROLOG, no longer 
require the programmer to 
specify in step by step form 
how a task is to be carried 
out. The programmer 
simply specifies in great 
detail the objectives, by 
means of stating rules in a 
restricted type of formal 
logic. The sequence of 
statements in a PROLOG 
program often have the 
same effect in whatever 
sequence they are written.

The interpretation of 
PROLOG "rules" to achieve 
the objectives of the 
program is carried out by a 
low level piece of software 
called an "inference 
engine". The inference 
engine expresses the ideas 
embodied by the rules 
contained in the particular 
PROLOG program which is 
being executed. The

Crocess actually carried out 
y the computer which is 

running a PROLOG 
program might be regarded 
as a type or cooperation, at 
a distance, between the 
authors of a set of PROLOG 
rules, and the authors of 
the inference engine. Who, 
then, is the creator?

The inference engine will 
have been written in a 
conventional programming 
language, and hence carries 
all the attributes of software 
as described above.

At least one supplier of a 
PROLOG environment also 
makes available complete 
suites of predefined 
PROLOG "rules", which 
software developers can 
incorporate into their own 
PROLOG programs, in a 
manner similar to the more 
conventional run-time 
software described above.

Comment

It seems that it will be 
increasingly difficult for the 
law to keep up with the 
interlocking complexities 
outlined above, and the 
pace of new developments 
in the technology. Indeed 
it is becoming increasingly 
difficult for computer 
professionals to unravel the 
maze of authors involved in 
software development.

The manifestation of a 
computer program will 
change from year to year as 
the technology changes. 
The same program may be 
written several times, and in 
different languages for 
different computers and 
different operating systems.

It is traditional human 
documentation which 
seems to be well catered 
for by existing law. From a 
computer professional’s 
point of view I suggest that 
the machine
implementation should be



OCTOBER 1989 COMPUTERS AND LAW NEWSLETTER PAGE 13

regarded at most levels, as 
mechanical and legally 
trivial. If what is to be 
protected is the expression 
of an idea; (which may be 
arguable after Autodesk 
Inc.) with the result that 
programs are to be 
protected, then perhaps the 
primary form requiring 

rotection should be the 
ighest level of expression. 

That is, the level at which 
other intellectual works 
have previously been 
protected - as conventional 
tangible items of technical 
human communication: 
charts, English language 
descriptions (even of an 
obtuse form such as 
"structured" English). These 
documents are all 
specifications, on whatever 
medium they are held, and 
the resulting operational 
computer program is a 
lower level manifestation of 
that specification.

The sheer complexity of the 
technical problems
concerning authorship and 
ownership means that 
attempts to isolate a 
protectable unit solely in
the form of program source 
code, object code, run time 
binaries or any other 
merely mechanical
expression of an idea, are 
likely to become bogged in 
a mire of argument.

During the development of 
software, the owners
should always formally
establish the connection 
between their higher level 
of expression, that is all the 
hierarchy of their design 
documents, and the 
program (or programs) 
written to that
specification - the next 
lowest level of expression, 
and then as far down as 
they are compelled to go. 
Clear and concise 
documentation is necessary 
for good software

engineering.

TTius, the design and 
specification documents are 
concrete expressions of 
ideas which can be 
protected as intellectual 
property. The major task 
should be to show an 
unbroken succession from 
the higher levels of 
specification to the lowest, 
and to be able to assert that 
the lower level 
manifestations are the same 
thing in another form.

References

Sammut (1986), "Why Ada 
is not just another 
programming language", 
Communications of the 
ACM, August 1986, 
P722-732.

• Director of Computing 
Services, Blake Dawson 
Waldron, Solicitors.

WESTERN AUSTRALIAN SOCIETY

The Western Australian Society for Computers and the Law is operational again, with a 
new committee and some upcoming activities planned. On 15 November a seminar on 

"Laptops for Lawyers" will be held. For details of planned activities, and any other
enquiries, contact either:

The President: Kevin O’Toole 
(09)221-4748

or the Secretary: Michael Pattison 
(09)322-0321


