
Enhancing software protection with poly-metamorphic code
S tep h en Yip a n d Q in g Z h a o , U n iversity o f N o r th u m b r ia a t N ew ca s t le , E n g lan d , U K

Stephen Yip is a senior lecturer in the School of Informatics, University of Northumbria at Newcastle, England, UK. He
holds a PhD in Computer Science from the University of Durham and has research interests in software engineering,

computer networks, web applications and security. Qing Zhou is a Master of Science student who has just completed his
MSc dissertation on software protection and poly-metamorphism under the supervision of Dr Stephen Yip.

Abstract

We are arguing that legal protection
alone is insufficient to uphold
software copyright against
infringements. Technical protection
schemes are useful to safeguard
software products against pirates and
copyright violation. This paper
focuses on software-based protection
mechanisms, examining the
commonly used “registration key”
protection mechanism and its
weaknesses in some details. It then
describes our experiments with a new
approach called poly-metamorphism -
an approach to ensure that the
appearance of the software protection
code is altered each time the protected
software is invoked or executed,
making it very difficult for crackers to
understand or modify the protection
code.

The results and findings of our
experiments are encouraging. For
completeness, this paper also provides
a brief review of hardware-based
protection measures. Following the
findings and evaluations of our work,
we conclude that the poly­
metamorphism approach is probably
stronger than most of the existing
software-based protection
mechanisms. We intend to furnish our
poly-metamorphic engine in the form
of an Application Program Interface
(API), and to make it available to
researchers and software producers.

1 Introduction

Software piracy is the illegal use,
duplication or distribution of a
software product without the
permission of its owner, violating
copyrights or intellectual property
rights (IPRs). “Global dollar losses
due to software piracy increased 19%
in 2002 to $13.08 billion, reflecting
larger losses in a depressed software

market” [BSA 2003], Software piracy
is seen to bear a significant impact on
the entire IT industry [Aladdin 2003],
despite the existence of laws on
software copyright protection. Current
laws protecting software copyrights
are based on the agreement on Trade-
Related Aspects of Intellectual
Property Rights (TRIPs agreement)
as part of the World Trade
Organization (WTO) agreements. The
TRIPs agreement [WTO 1994] clearly
states, amongst its other provisions
[Liu 2003], that:

(a) “Computer programs whether in
source or object code” shall be
protected as “literacy works”
under the Berne Convention
[Bennett 2000];

(b) Infringing copies of a copyright
work must be liable to seizure by
a member country of the WTO
[Gikkas 1996];

(c) WTO members must provide
effective action against
infringement of IPRs protected in
the TRIPs agreement, including
remedies to prevent and deter
further infringement

[ADFAT 2003]; and

(d) WTO members are required to
provide judicial authorities with
power to issue injunctions, award
damages, and to dispose goods
tainted by infringement of the
TRIPs agreement
[WHOPL 1999], [Hunt 2003],

By examining these provisions, it is
evident that the TRIPs agreement has
provided a firm legal basis for the
protection of software copyrights
within the software industry.
However, the legal protection of
software is probably more effective
with corporate users, than with
individual home users whom the law
is more difficult to police. In view of
the proliferation of illegal copies of

software available on the internet and
CDs, it appears that legal protection
alone might not be sufficient. “The
legal rights to software protection does
not provide complete power or
control” [Chen 2001]. The argument is
well known. No one has a right to
enter your house without your
consent. “The inviolability of your
house is protected by law.
Nevertheless, you prefer to have a
lock in your door”
[Ramanchauskas 1997]. Although
software products are adequately
protected by law, it is prudent to lock
or protect software against piracy as
computer software can be copied and
distributed easily.

For many years now, the software
industry has been striving to find ways
to protect their software products. It
has been argued that “technical
protection schemes can diminish the
number of illegal copies”
[Hachez 1999]. Current technical
protection schemes are either
software-based or hardware-based.

2 Review of software-based
protection measures

In the early days, licensed software
was sold in the form of its container
media - a set of floppy disks or CD. A
piece of licence paper or a receipt
provided the proof that the purchaser
was authorised to run the software. In
the case where the purchaser owned
more than one computer, there was
virtually nothing to stop a “single-use
licence” owner installing more than
one copy of the software on the
owner’s computers. It was also
possible for a friend of a “single-use
licence” owner to borrow a set of CDs
or disks and install the software on the
friend’s computer. This scenario was
quite common in the 1980s.

In the early 1990s, with the low
production costs of CDs and the

Computers & Law June 2004 11

Enhancing software protection with poly-metamorphic code
availability of CD writers, software
pirates began to manufacture illegal
copies of licensed software. The
authors of this paper witnessed, in the
mid-1990s, CDs packed with pirated
software being sold for as little as
US$0.15 per CD in certain places in
the Far East. During the 1990s,
according to Liu [Liu 2003], IPR
infringement was so widespread in
China that the assumed piracy rate
was 93%. The total losses in relation
to the infringement of United States
owner IPRs were estimated at US$1
billion in 1995 and US$2 billion in
1998.

Being aware of this problem, software
vendors began to find ways to protect
their software products. For example,
Microsoft included a “Certificate of
Authenticity” with their software
distribution CDs bearing a so called
product ID (e.g. 29395-OEM-
0005952-04835). The idea was that an
illegal copy of the software
distribution CD could not be installed
without the product ID being keyed in
during the software installation
process. Some other software
packages required a serial number, an
alpha-numeric key or a password to be
entered before the software could be
properly installed or run. These serial
numbers, keys or passwords were
often included within the delivery of
the software package.

These were all primitive attempts
towards software protection and in
many cases quite a wide range of
serial numbers or keys were accepted.
Software pirates could get hold of a
valid serial number or key by
purchasing one legal copy of the
licensed software, or by obtaining the
information from a legal purchaser. A
valid range of serial numbers or keys
were then sold together with the
pirated copies of the software. In order
for an alpha-numeric key to be an
effective protection mechanism, the
key value must be specially generated
(or tailor-made) according to the
environment of each individual
installation. Borrowing a valid key
from one installation should not
enable the software to be installed or
used anywhere else.

2.1 The current approach of
registration as a means of
protection

The situation worsened with the
advent of the internet, as software
pirates began to put pirated software
on websites for free download [Chen
2001], To protect the copyright of
their software products, software
vendors came up with an idea called
“registration”, which also takes
advantage of the internet.

Purchasers of licensed software are
required to register the copy of
software that is being installed in the
purchaser’s computer. The registration
process is largely automated. The
purchaser chooses to register by
clicking a link to the software
vendor’s website. A registration
program is then run to register the
personal details (e.g. name, post code)
of the purchaser, together with some
details of the computer system (e.g.
CPU / hard-disk serial number, etc) on
which the software is being installed.
Then a key or password is given by
the registration program to enable the
installed software to function. In these
days of e-business, the purchaser is
often required to enter a credit card
number and to authorise payment for
the software, before the registration
key will be given to enable the
software to function. As the
registration key is generated according
to the personal details and hardware
characteristics of the installation, a
copy of the registered software ported
onto another computer would not
work in its new environment, as the
personal details and hardware
characteristics would be different.

For example, popular “CD writer”
software (NBR 5.5) can be freely
down-loaded from the internet, even
from its official website. It is a
common phenomenon that many
software vendors allow “free
download” of their products from their
websites. One has to emphasise that
usually only the “download” is “free”
- payment may be required (as part of
the registration process) after the
download and before the software can
be installed or run on a computer. The
reason for allowing free download is
to attract potential customers and
bring them a step closer to buying the
software. This is particularly effective

for small software vendors because it
avoids the higher costs of advertising
and distributing their products. In
many cases, the downloaded software
is an evaluation version that could
only be used for a short period of time
(e.g. 10 days) or only be executed or
run for a fixed number of times (e.g. 5
times). Afterwards the evaluation
version will display a message of
“evaluation expired - please register
and purchase the software”.

Recent developments in registration
number protection mechanisms have
been successful in issuing registration
keys that can only be used for one
legal installation. Each registration
key is tied down to both the personal
details of the purchaser and the
specific details of the computer system
installed with a legal copy of the
protected software. A valid
registration key for one installation
cannot be used anywhere else.
However whenever there is a new
protection scheme, there is always
someone who can work out how to
crack it. Then a new and stronger
scheme will appear [Alfred 2002], It is
now possible for technically
competent pirates to crack the
registration protection mechanism.

2.2 Weaknesses of current
registration protection
mechanisms

It is observed that “many software
producers now protect their programs
by issuing registration numbers with
each package. When you install the
software, you must enter the
registration number. However, this
does not prevent all piracy, but limits
it” [Jupitermedia 2003], The fact is, it
has not taken pirates a very long time
to find ways to crack the registration
protection scheme. There are two
common approaches to violate
registration protection:

(a) By analysing the object code of
the protected software, and by
observing the keys or passwords
generated for a number of
installations with known
personal details and hardware
characteristics, it is possible for
pirates to write programs to
generate valid keys or passwords
for unregistered or illegal
installation of the licensed

12 Computers & Law June 2004

Enhancing software protection with poly-metamorphic code
software. Having worked out
how to generate valid registration
keys for some popular software
packages, some pirates put these
so called “key gen” programs on
the internet. It has been
acknowledged that “the
registration number protection
technique presently has a serious
problem: the publishing of
registration keys on the internet”
[Cerven 2002]; and

(b) Some pirates have the technical
capability to crack software
protection by modifying the
program code. Their approach is
often to make a minimal change
(called a patch) to the executable
code (also called binary or object
code, i.e. not the source code
which the pirates normally do
not have). The patch is usually a
very small change to bypass the
code that checks the validity of
the registration number entered.

As mentioned above, some software
vendors provide free evaluation
version of software packages which
only work for a certain period of time
or number of executions. To overcome
the protection of these evaluation
versions, there is a third, but legal
approach. By removing and re­
installing these evaluation versions,
users may extend the trial period of
the software without paying or
registering. Although it seems to be a
tedious task to repeatedly re-install the
same piece of software, the actual
process of removal and re-installation
would usually take no more than a
couple of minutes.

3 Crackers or reverse-
engineers

Crackers are people who are interested
in breaking software protection and
security systems. Many crackers
begin quite innocently because
cracking is fun and challenging. There
are others who attempt cracking as
they want to use proprietary software
packages without paying for them.
Some are even involved in the illegal
distribution of cracked software for
financial gain. In order to produce
better protection systems, it is
important to understand commonly
used cracking techniques.

Usually crackers are experienced
programmers who can perform
programming in low level assembly
languages. Cracking requires technical
knowledge in programming,
cryptography, operating systems and
reverse engineering.

“Reverse engineering” is working on
existing lower level code, in order to
generate higher level representation
(i.e. higher level code information or
knowledge) of the software being
examined. The source code of
protected software is normally
unavailable to crackers, who have to
work on the object or binary code to
develop an understanding of the
protected software.

3.1 Basic cracking tools

It is acknowledged that “virtually
every serious cracker uses a debugger
in order to break applications”
[CrackZ 2000]. A debugger, as its
name suggests, is a tool for
programmers to debug their programs.

A debugger allows a programmer to
execute an object program one step
(i.e. one machine instruction) at a
time. Thus the programmer can
observe the effect of each instruction,
by examining any changes or effects
on memory content or execution
sequence as the result of each
instruction being executed. Running a
program under a debugger is like a
slow motion playback, enabling a
programmer to uncover/locate (i.e.
debug) any programming errors within
the code. A cracker can gain valuable
insight about how the registration
protection code works. Crackers can
use a debugger to monitor contents of
the CPU registers and memory
locations while executing the object
code. Debuggers allow crackers to
trace or step through each line of code
and modify values in memory
locations. Crackers can also speed up
their step-by-step observation of the
program execution by allowing the
program to run as normal, except
stopping at a number of so called
“breakpoints” selected by the cracker.
“Dynamic analysis” is the name of
this process of executing an object or
binary code, in order to observe and
understand the internal working of a
program. Commonly used debuggers
include Softice, Ollydbg, Windebug
and Trw2000.

Another software tool used by
crackers is called a “de-assembler”. A
de-assembler can translate machine
code (in binary form) into a more
readable or meaningful form called
“assembler code” (which presents
each machine code in mnemonics that
are more meaningful to humans than
the binary machine code). Assembler
codes are not as readable as the source

Instruction Explanation

1. call check reg key : call routine to check registration key

2. cmp result, 1 : compare result returned by registration checking

routine with the value of 1 (1 means registration

key is valid)

3. jz reg_key_ok : if result equals 1 (jz^jump if equal), jump to

routine at address reg key ok

4. jmp reg_key_not_ok : else jump to address reg key not ok to print error

message - “Registration key invalid”

Figure 1 - a section of assembly code checking the validity of the registration key entered

Computers & Law June 2004 13

Enhancing software protection with poly-metamorphic code
code of high level programming
languages. However, software pirates
are usually technical programmers
who are familiar with programming
low level programming languages
called “assembly languages”. “Static
analysis” is the process of gaining an
understanding of the internal workings
of a program without executing the
code, such as by translating machine
code back to the more meaningful
assembler code. Examples of de­
assemblers commonly used by
crackers include Win32dasm and IDA
Pro.

It is sometimes possible to translate
the object code to a high level
programming language (i.e. at a higher
level and more readable than assembly
languages), by using a tool called a
“de-compiler”. Some common
examples of de-compilers include Jad
(for Java), Dede (for Delphi) and
Exdec (for Visual Basic).

3.2 Bypassing software
protection code

Crackers can aim to change a section
of protected code to gain illegal
access. They usually trace (with a
debugger) the execution of the
protected program to understand the
code and then locate the section of
code responsible for validating
registration numbers. Finally crackers
modify or patch the executable file
using a hexadecimal text editor. To
violate the protection scheme, crackers
usually make a minimal code change
to bypass registration number
validation or its effect.

The following is an example of a very
small but vital part of the protected
software, in assembly code, that
checks the validity of the registration
key entered. If the registration key is
ok, the program continues to perfonn
its normal functions by jumping to the
address labelled reg key ok.
Otherwise, it jumps to a section of
code at location r e g k e y n o t o k ,
which will print the message
“Registration key invalid” and stops
program execution.

Crackers can modify the jump
instruction to bypass the protection
scheme. For example, change the
instruction at line 3 from a
conditional jump instruction (jz -
jump if equal) to an unconditional

jump instruction (jmp). Thus the error
processing (from line 4 onwards) will
never be executed.

In practice, crackers usually focus on
locating the jump instructions that are
responsible for validating registration
keys. With typical PC hardware, the
following jump instructions are
commonly used :

- JZ/JE (jump if equal)

- JNZ/JNE (jump if not equal)

-JMP (unconditional jump)

Figure 2 - commonly used jump
instructions in PC assembly languages

To narrow down the scopes of their
searches for jump instructions,
crackers usually set breakpoints at
locations within the protected program
that appear to be responsible for
validating registration keys, then step
through the code slowly with a
debugger to locate a suitable point to
modify the code (when running a
program under a debugger, a break
point will cause the execution to halt,
so that the cracker can examine the
effect of the section of code around
the breakpoint, then continue
execution in a slower step-by-step
manner.)

3.3 General cracking steps

To surmnarise, crackers generally
perform the following activities:

(a) Static analysis - crackers can
gain an understanding of the
protection scheme through
studying the internal structure of
the program. De-assemblers or
de-compilers are tools that can
help by translating the object or
binary code back to a more
meaningful form such as
assembler code to high level
programming languages;

(b) Dynamic analysis - to enhance
understanding of the protected
software by running the code
under a debugger;

(c) Locating - to locate specific
code sections responsible for
registration validation, by setting
breakpoints and stepping through
code sections slowly. The aim is
to find a suitable point to modify

the code to bypass software
protection; and

(d) Modifying - the final step is to
change hexadecimal machine
codes in the executable file (EXE
or DLL format file) to bypass the
protection scheme.

3.4 Techniques to enhance
registration protection

There are a number of existing
techniques that can be used to enhance
the registration key protection
mechanism:

(a) Code encryption

Software protection can be enhanced
by distributing object codes in
encrypted form [Ooi 2002], The use of
strong encryption algorithms and a
longer encryption key length would
help to secure software against
crackers [Sinclair 2002],

(b) Compression

By applying compression to object
code before software distribution. De­
compression usually takes place at run
time Crackers will find it more
difficult to understand the code
structure during static analysis, as it is
in the form of a compressed file on
disk.

(c) Code jumbling or obscuration

Special efforts to make source codes
obscure, complicated or unintelligible
as a measure against reverse
engineering.

(d) Anti-debugging coding

Add special routines to detect and
block crackers from using debugging
tools against the protected software.

4 Metamorphism and poly­
metamorphism

It has been said that “the evolution of
metamorphic viruses is one of the
great challenges of this decade”
[Szor2001], “Metamorphic” is from
the word metamorphosis - the change
of form or character, as in the well
known example of the metamorphosis
of the silkworm into a butterfly. A

14 Computers & Law June 2004

Enhancing software protection with poly-metamorphic code
metamorphic virus is able to change
its form or character and is therefore
difficult to recognize and deal with
[Perriot 2003]. Metamorphism, as
exemplified in the case of the
silkworm, involves the change or
transformation into a different form or
character (or a small number thereof).

Polymorphism goes a step further. The
Longmans English Dictionary defines
“polymorphic” as the existence in
various (or many) different forms. The
polymorphic techniques in
programming allow an original piece
of code to be changed (or mutated)
into many different forms, whilst
keeping its basic functions.
Effectively, when a polymorphic code
is loaded into memory for execution, it
begins execution by transforming
itself into a form different from its
static form as found in a disk file. It is
possible that the polymorphic code is
transformed into a different form
every time it is loaded from disk.
Since it is the polymorphic code that
transforms itself, as in the
metamorphosis of the silkworm, we
use the term “poly-metamorphism” to
describe this phenomenon of self­
transforming software.

The common approaches to
implement polymorphism are :

(a) Insertion of redundant code to
alter the appearance of the
original code;

(b) Mutation - change or mutate

existing code without affecting
its basic function; and

(c) Varying the locations or
sequence of existing code
without affecting its basic
function.

Some of these poly-metamorphic
techniques have been used in
computer viruses.

5 Poly-metamorphism as a
strong means of protection

Current metamorphic techniques can
achieve a high degree of variability.
Our approach is to implement a poly-
metamorphic engine that would take a
piece of program code as input and
perform mutations upon the original
code to produce a resultant code piece
(i.e. a mutant) that has exactly the
same functions as the original
program, but appears differently in
individual instructions and sequences
of code. The poly-metamorphic engine
ensures that the appearance of the
software protection code is altered
each time the protected software is
invoked or executed. When a pirate
attempts to follow the execution path
of the protected software in order to
locate and bypass the registration
validation code, the path (or sequence
of execution) appears to be different
every time. This makes it almost
impossible for a cracker to locate and
modify a certain line of code as to

bypass registration validation. Poly­
metamorphism “takes advantages of
machine code assembled at random to
yield extra-ordinary security against
all kinds of attacks”
[CyprotectAG 2003],

In our approach to achieve poly­
metamorphism, at least part of the
software being protected must be
programmed in assembly languages
(instead of high level programming
languages). It is necessary to use an
assembly language to prepare,
dynamically (i.e. at run time), a matrix
containing entry points or addresses of
various routines within the software
being protected. The entry addresses
of various routines (and their positions
within the entry-points matrix) are
varied every time when the software is
invoked and loaded into memory. This
is to make it difficult for crackers to
locate the routines responsible for the
validation of registration numbers.

The path (the correct execution
sequence) of the "registration key
validation” code is deliberately hidden
(or made indirect) from the cracker.
Functions within the "registration key
validation” code are called indirectly
via this matrix of entry points. Inside
this matrix, entry points for other
functions (i.e. for normal processing)
and entry points of routines
responsible for "registration key
validation" and entry points of non­
existing or fake functions / routines
are all fixed together. To make it more

Test
program

Challenge posted to the following
“crackme” website No. of viewers No. of downloads No of replies

received

Crackmel http://crack.zuasoft.com N/A N/A 23

Crackme 1 http://www.crackmes.de N/A N/A N/A

Crackmel http://board.anticrack.de 379 51 16

Crackmel http://picasso.poupe.net 49 10 0

Crackmel http://www.chinaecg.com 35 N/A 4

Crackmel http://www.chinaycg.com 9 N/A 0

Crackmel http://www.exetools.com 52 12 4

Crackmel http://www.crackbest.com 45 N/A 6

Crackme2 http://crack.zuasoft.com N/A N/A 3

Crackme2 http://board.anticrack.de 233 30 9

Crackme2 http://www.ahzol.com 211 N/A 13

Crackme2 http://www.crackmes.de N/A N/A N/A

Crackme2 http://picasso.poupe.net 199 83 9

Crackme2 http://tntforum.com 21 N/A 0

Figure 3 - Statistics of two “crack-me” challenges posted on a number of websites

Computers & Law June 2004 15

http://crack.zuasoft.com
http://www.crackmes.de
http://board.anticrack.de
http://picasso.poupe.net
http://www.chinaecg.com
http://www.chinaycg.com
http://www.exetools.com
http://www.crackbest.com
http://crack.zuasoft.com
http://board.anticrack.de
http://www.ahzol.com
http://www.crackmes.de
http://picasso.poupe.net
http://tntforum.com

Enhancing software protection with poly-metamorphic code
difficult to follow the execution path
of the "registration key validation
code", every time the protected
software is loaded into memory, a
different pattern of arrangement of
entry points, within the matrix, is
randomly generated. In order to
protect the "registration key validation
code" even further, the whole program
(i.e. the protected software) is
encrypted, making it difficult for
crackers to locate vulnerable
instructions (such as conditional jump
instructions [je] or [jne]) via static
analysis. Moreover, even the matrix of
entry points itself is encrypted.
Encryption has made static analysis
almost impossible and poly­
metamorphism has made dynamic or
runtime analysis very confusing or
difficult.

6 Experiments with poly­
metamorphism for
software protection

In order to evaluate poly­
metamorphism as a means of software
protection, we have implemented two
versions of registration number
protection systems. The first version is
called Crackmel (which only uses
encryption without poly­
metamorphism) The second version is
called Crackme2 (which employs both
poly-metamorphism and encryption).
The two systems were posted as
challenges in a number of “crack-me”
websites for about a month from
August to September 2003. The

following table shows the statistics
about the number of viewers of the
challenges at different websites,
together with number of times that the
test programs were downloaded, and
the number of replies (or messages)
received from people who were
interested after viewing the
challenges.

The overall result is that only 3 people
managed to crack Crackmel (which
only uses encryption without poly­
metamorphism). Although quite a
number of emails from interested
crackers, no one managed to crack
Crackme2 (which employs both poly­
metamorphism and encryption). For
further details of our experiment
(including design and implementation
of our Poly-metamorphic engine),
please refer to [Zhou 2003],

7 Hardware-based protection
measures

Some hardware-based protection
mechanisms are reviewed below :

(a) Hardware-key - hardware key as
a device is connected to an input
/ output port (serial, parallel or
the new USB ports) on the
computer. The protected program
checks the I/O ports for a valid
hardware key before it would
continue normal execution.

(b) Smart cards - the protected
program, as it begins execution,
checks whether a valid smart
card is present.

(c) CD check - applicable to
software distributed on CDs. The
program checks to identify if it is
running off a valid CD. This CD
protection mechanism has been
used by some vendors of
computer games.

8 Conclusions and future
work

We have argued that legal protection
alone is insufficient to uphold
software copyright against
infringements. After examining
existing software protection
mechanisms in general, and
registration key protection in
particular, we propose poly­
metamorphism as a strong means to
enhance software protection. The
results and findings of our
experiments are encouraging. Our
poly-metamorphic engine is able to
automatically generate mutants with
code sequences different from the
original program, but with the same
functionalities. It would be difficult
even for the author of the original
software package to locate the
registration validating code at run
time, and more difficult or impossible
to bypass or violate its protection
mechanism. Perhaps “the poly-
metamorphic method is among the
strongest ciphers available today and
it’s probably the strongest.”
[CyprotectAG 2003]

“Metamorphism is a technology with a
very promising future; ... none of the

Type Advantages Disadvantages

CD check The software can only be installed or executed
from the original cd-rom

User needs to keep the original cd-rom.

Sometimes the specific media may be
counterfeited or duplicated by software or
hardware means.

Hardware
key

The protected software can only be executed
with the hardware key (dongle) plugged in the
computer.

It is difficult to duplicate.

Extra cost for users to possess the hardware key.

Smart cards The protected software can only be executed
with the smart card.

With built-in microchips, smart card can
execute checking routines, access or update
internal data.

Extra cost of a smart card and a smart card
reader.

Figure 4 - Hardware-based protection mechanisms

16 Computers & Law June 2004

Enhancing software protection with poly-metamorphic code
protections currently offered use full
metamorphism.” [Cerven 2002] Our
future work is to furnish the poly-
metamorphic engine in the form of an
API, and to make it available to
researchers and software producers.

References

[ADFAT 2003] Australian
Department of Foreign Affairs &
Trade (2003) C hina's WTO
m em bership - the accession
negotiations 19 March as found at
h ttp ://w w w. dfat. gov. au/trade/
negotiations/accession/wto china.html

[Aladdin 2003] Technical white paper,
Softw are P ro tectio n -T h e N eed , the
Solutions, a n d the R ew ards, Aladdin
Knowledge Systems. 2003. Available
at: http://www.eAladdin.com/hasp

[Alfred 2002] Alfred K.M. Lo,
Softw are P rotection a n d its
A nnihilation, University of
Birmingham May 2002

[Bennett 2000] Bennett, D., Liu, X.,
Parker, D., Steward, F., and Vaidya,
K. (2000) Technology transfer to
C hina: a study o f strategy in 2 0 E U
industrial countries,
http://research.abs.aston.ac.uk/workin
g papers/0006.pdf

[BSA 2003] P ira cy Study Business
Software Alliance June 2003
Available at:
http://global.bsa.org/usa/research/

[Cerven 2002] Pavol Cerven,
C ra ck p ro o f Y our Softw are— the B est
Ways to P rotectY our Softw are against
C ra ck ers, No Starch Press 2002

[Chen 2001] Min Chen, Softw are
P ro d u ct P rotection, Seminar on
Network Security Helsinki University
2 0 0 1 ,page 2

[CyProtectAG 2003] CyProtectAG,
The polym orphic encryption m ethod,
http://english.cvprotect.com/mainO 110
.php, 2003

[Esprit 2000] Esprit Project, State o f
the A rt in Softw are P rotection,
Filigrane Consortium, May 2000

[Ooi 2002] K.S.Ooi, Brain Chin Vito,
Cryptanalysis o f S -D E S , University of
Sheffield Centre, Taylor’s College,
April 2002

[Gikkas 1996] Gikkas, N. S. (1996)
International licen sin g o f intellectual
p ro p erty : the p ro m ise a n d the p e ri l
Journal of Technology Law & Policy
Vl(l) , http://ioumal.lavv.ufl.edu/-
techlaw/l/gikkas.html

[Hachez 1999] G. Hachez and
C.Vasserot , State o f the A rt in
Softw are P rotection , FILIGRANE
Consortium, 1999,
http://www.dice.uclac.be/crvpto

[Hunt 2002] Hunt & Hunt Lawyers,
E n ter the d ra g o n : C hina a n d the WTO
China Focus Issue, 2002,
http://www.hunthunt.com.au/hunt.hunt
/Publications/ChinaFocusFeb02.pdf

[Jupitermedia 2003] Jupitermedia,
Copy P rotection , 2003.
http://www.jupitermedia.com/TERM/
C/copy_protection.html

[Liu 2003] Vincent Liu, Copyright
a n d softw are p ro tectio n : is it w orking
in C hina?, Computers & Law, Issue
51, March 2003

[Perriot 2003] Frederic Perriot,
Striking Sim ilarities: W in32/Sim ile
a n d M etam orphic Virus C ode,
Symantec Corporation 2003

[Ramanchauskas 1997] Vitas
Ramanchauskas, P ro tect y o u r
p ro g ra m s fro m p ira cy , LastBit
Software Ltd 1997

[Sinclair 2002] James Sinclair,
S ecu rin g electronic data transfer -
responsibly, GNSS 2002,
http://www.gnss.com

[Szor2001] Peter Szor and Peter
Ferrie. H unting F o r M etam orphic,
Virus Bulletin Conference, September
2001

[WHOPL 1999] White House Office
of Public Liaison, B riefin g on the
Clinton adm inistration a gen d a f o r the
W orld T rade O rganization m aterial -
Sum m ary o f U S - C hina bilateral
WTO A greem en t, 17 November 1999,
http://www.uschina.org/public/991115
a.html

[WTO 1994] WTO A greem en t on
Trade-R elated A spects o f Intellectual
P roperty R ights, signed in Marrakesh,
Morocco on 15 April 1994,
http://www.wto.org/english/
docs_e/legal_e/2 7-trips_01 _e .htm

[Zhou 2003] Qing Zhou, Im proving
R egistration N u m b er P rotection
M echanism with the Poly-
M etam orphism A lgorithm , MSc
Dissertation, School of Informatics,
University of Northumbria,
Newcastle, England, UK, Sept 2003

Computers & Law June 2004 17

http://www.eAladdin.com/hasp
http://research.abs.aston.ac.uk/workin
http://global.bsa.org/usa/research/
http://english.cvprotect.com/mainO_110
http://ioumal.lavv.ufl.edu/-techlaw/l/gikkas.html
http://ioumal.lavv.ufl.edu/-techlaw/l/gikkas.html
http://www.dice.uclac.be/crvpto
http://www.hunthunt.com.au/hunt.hunt
http://www.jupitermedia.com/TERM/
http://www.gnss.com
http://www
http://www.wto.org/english/

